Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction.
نویسندگان
چکیده
One of the central tasks of stem cell biology is to understand the molecular mechanisms that control self-renewal in stem cells. Several cytokines are implicated as crucial regulators of hematopoietic stem cells (HSCs), but little is known about intracellular signaling for HSC self-renewal. To address this issue, we attempted to clarify how self-renewal potential is enhanced in HSCs without the adaptor molecule Lnk, as in Lnk-deficient mice HSCs are expanded in number >10-fold because of their increased self-renewal potential. We show that Lnk negatively regulates self-renewal of HSCs by modifying thrombopoietin (TPO)-mediated signal transduction. Single-cell cultures showed that Lnk-deficient HSCs are hypersensitive to TPO. Competitive repopulation revealed that long-term repopulating activity increases in Lnk-deficient HSCs, but not in WT HSCs, when these cells are cultured in the presence of TPO with or without stem cell factor. Single-cell transplantation of each of the paired daughter cells indicated that a combination of stem cell factor and TPO efficiently induces symmetrical self-renewal division in Lnk-deficient HSCs but not in WT HSCs. Newly developed single-cell immunostaining demonstrated significant enhancement of both p38 MAPK inactivation and STAT5 and Akt activation in Lnk-deficient HSCs after stimulation with TPO. Our results suggest that a balance in positive and negative signals downstream from the TPO signal plays a role in the regulation of the probability of self-renewal in HSCs. In general, likewise, the fate of stem cells may be determined by combinational changes in multiple signal transduction pathways.
منابع مشابه
Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice.
Despite being a hallmark of hematopoietic stem cells (HSCs), HSC self-renewal has never been quantitatively assessed. Establishment of a clonal and quantitative assay for HSC function permitted demonstration that adult mouse HSCs are significantly heterogeneous in degree of multilineage repopulation and that higher repopulating potential reflects higher self-renewal activity. An HSC with high r...
متن کاملLnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2.
In addition to its role in megakaryocyte production, signaling initiated by thrombopoietin (TPO) activation of its receptor, myeloproliferative leukemia virus protooncogene (c-Mpl, or Mpl), controls HSC homeostasis and self-renewal. Under steady-state conditions, mice lacking the inhibitory adaptor protein Lnk harbor an expanded HSC pool with enhanced self-renewal. We found that HSCs from Lnk-/...
متن کامل[Sh2b3/Lnk family adaptor proteins in the regulation of lymphohematopoiesis].
Sh2b3/Lnk consisting of an N-terminal proline-rich region, PH-, SH2-domains and a tyrosine phosphorylation site, forms an intracellular adaptor protein family conserved from drosophila to mammals, together with Sh2b1/SH2-B and Sh2b2/APS (adaptor protein with PH and SH2 domains). Lnk negatively regulates lymphopoiesis and early hematopoiesis. The lnk-deficiency results in enhanced production of ...
متن کاملLnk-dependent axis of SCF–cKit signal for osteogenesis in bone fracture healing
The therapeutic potential of hematopoietic stem cells/endothelial progenitor cells (HSCs/EPCs) for fracture healing has been demonstrated with evidence for enhanced vasculogenesis/angiogenesis and osteogenesis at the site of fracture. The adaptor protein Lnk has recently been identified as an essential inhibitor of stem cell factor (SCF)-cKit signaling during stem cell self-renewal, and Lnk-def...
متن کاملMERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling.
Hematopoietic stem cell (HSC) self-renewal and multilineage reconstitution are controlled by positive and negative signaling cues with perturbations leading to disease. Lnk is an essential signaling adaptor protein that dampens signaling by the cytokine thrombopoietin (Tpo) to limit HSC expansion. Here, we show that MERIT40 (Mediator of RAP80 Interactions and Targeting 40 kDa [M40]), a core sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 7 شماره
صفحات -
تاریخ انتشار 2007